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Abstract

Collaborative spectrum sensing is regarded as a promising approach to significantly improve the

performance of spectrum sensing in Cognitive Radio Networks (CRNs). However, due to the open nature

of wireless communications and the increasingly availablesoftware-defined radio platforms, collaborative

spectrum sensing also poses many new research challenges, especially in the aspects of security and

privacy. In this article, we firstly identify the potential security threats towards the collaborative spectrum

sensing in CRNs. Then we review the existing proposals related to secure collaborative spectrum sensing.

Furthermore, we identify several new location privacy related attacks in collaborative sensing, which

are expected to compromise secondary users’ location privacy by correlating their sensing reports and

their physical locations. To thwart these attacks, we propose a novel privacy preserving framework in

collaborative spectrum sensing to prevent location privacy leaking. We design and implement a real-

world testbed to evaluate the system performance. The attack experiment results show that, if there is no

any security guarantee, the attackers could successfully compromise a secondary user’s location privacy

at the success rate larger than90%. We also show that the proposed privacy preserving framework can

significantly improve the location privacy of secondary users with a minimal effect on the performance

of the collaborative sensing.
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I. INTRODUCTION

The proliferation of smart phones and mobile Internet basedapplications require a better

utilization of radio channels. To address the ever increasing demand for wireless bandwidth,
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cognitive radio networks (CRNs) have been proposed to improve the efficiency of channel utiliza-

tion under the current static channel allocation policy. Unlike conventional spectrum regulation

paradigms in which the majority of the spectrum is allocatedto fixed licensed users (or primary

users) for exclusive use, a CRN system permits unlicensed users (or secondary users) to utilize

the idle spectrum as long as it does not introduce interference to the primary users. As an

important regulatory step, the FCC (Federal Communications Commission) has recently adopted

rules to allow unlicensed radio operation in the unused portions of the TV spectrum, commonly

referred as white space, which is expected to provide additional spectrum.

One major technical challenge in designing dynamic spectrum access systems is to detect

the presence of primary users and to further determine the availability of a certain channel.

It is recently discovered that collaboration among multiple secondary users can significantly

improve the performance of spectrum sensing by exploiting their spatial diversity. Therefore,

collaborative spectrum sensing has been widely adopted in all existing standards or proposals,

i.e., IEEE 802.22 WRAN, CogNeA, IEEE 802.11af and WhiteFi.

Collaborative spectrum sensing is regarded as a promising approach to significantly improve

the performance of spectrum sensing in CRNs. However, due tothe open nature of wireless

communications and the increasingly available software defined radio platforms, e.g., Universal

Software Radio Peripherals (USRPs), it also poses many new research challenges, especially in

the aspects of security and privacy. A malicious node may seek to exploit a channel in a region by

falsely reporting a present primary signal, or dually, seekto vandalize the network by reporting

that a present primary is not detected thereby encouraging interference from secondary users.

Further, a selfish node may try to enjoy a free wireless accessservice without contributing to the

spectrum sensing result. Least but not last, untrusted collaborative spectrum fusion center may

try to compromise the location privacy of a specific user by geo-locating it from its collaborative

spectrum sensing reports.

In this article, we summarize the existing security threatstowards collaborative spectrum

sensing in CRNs, and review existing solutions to them. We then identify several new security

attacks in collaborative spectrum sensing, which aim to compromise secondary users’ location

privacy by correlating their sensing reports and their physical locations. To thwart these attacks

and preserve location privacy, we propose a novel privacy preserving framework for collaborative

spectrum sensing. We design and implement a real-world testbed to evaluate its performance.
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The attack experiment results indicate that, when there is no security technique employed, the

attacker can compromise a secondary user’s location privacy at a success rate larger than90%.

We further show that the proposed privacy preserving framework can significantly improve the

location privacy of secondary users without jeopardizing the collaborative spectrum sensing

performance.

II. COLLABORATIVE SENSING IN COGNITIVE RADIO NETWORKS

In CRNs, a fundamental task of each CR user is to detect the presence of primary users

(PUs) if they exist or to identify the available spectrum if PUs are absent. Although the FCC’s

recent ruling eliminates spectrum sensing as a requirementfor devices that have geo-location

capabilities and can access a new TV band (geo-location) database, it is expected that spectrum

sensing and its variants will still play an important role inimproving the performance of CRNs

for the following reasons. First, collaborative spectrum sensing can be used to support the

operation of sensing-only devices that cannot access the database. Second, compared with the

database built from propagation models, collaborative spectrum sensing can provide a more

accurate view of spectrum availability since the database may be conservative and declare many

channels (at locations away from the TV transmitters) as occupied even if they are idle. Third,

the details of spectrum sensing results assist in selectinghigher quality channels for operation

when multiple channels are available. Finally, utilizing the geo-location database for spectrum

availability information is similar to traditional location based services; it will inevitably leak

users’ location information, and may not be desirable for location-privacy-sensitive secondary

users.

Collaborative spectrum sensing methods can be generally classified as centralized or distributed

sensing, as illustrated in Fig. 1. In centralized sensing, acentral node called Fusion Center (FC)

controls a three-step cooperative sensing process. First,the FC selects a control channel and

instructs all cooperating CR users to individually performlocal sensing. Second, all cooperating

CR users report their sensing results to FC via the control channel. Finally, FC combines the

received local sensing reports to determine the presence ofPUs, and diffuses the decision back

to cooperating CR users. On the contrary, distributed sensing does not need any centralized

FC to make the cooperative decision; CR users communicate with each others in a peer-to-

peer manner and iteratively converge to a unified decision onthe presence or absence of PUs.
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Fig. 1. Distributed CRN and Centralized CRN

Common signal detection techniques include matched filter,energy detection, cyclostationary

detection and wavelet detection, among which energy detection is the most popular approach

due to its simplicity and short sensing time (less than 1ms for a channel). In this article, we adopts

energy detection to detect signal. However, the proposed scheme could be readily extended to

other signal detection techniques.

III. SECURITY CHALLENGES IN COLLABORATIVE SENSING

In collaborative spectrum sensing of CRNs, there are several main emerging security challenges

as introduced below.

∙ Authentication: Several aspects of authentication issues should be considered when securing

collaborative spectrum sensing.

– Primary User Authentication: In CRNs, an attacker may transmit its signal with high

power or mimic specific features of the primary user’s signal(e.g., use the same pilot or

synchronization word) to bypass the primary user detectionmethod used. Consequently,

secondary users may incorrectly identify the attacker’s signal as the primary user’s and

will not use the relevant channel. Such attack is called Primary User Emulation (PUE)

attack [1], [2]. To thwart this attack, secondary users should authenticate the identity

of received signal when sensing the targeted channel.
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– Secondary User Authentication: When the FC (or a secondary user) collects sensing

reports from other users, it should authenticate the identities of the secondary users.

Otherwise, a potential attacker may forge the identity of a secondary user to send false

sensing reports.

– Sensing Report Authentication: Although secondary users’ identities can be authenti-

cated during the sensing report aggregation process, it is possible that some legitimate

but malicious secondary users report unauthentic sensing results in an internal attack.

This attack is coined as Spectrum Sensing Data Falsification(SSDF) attack [3], [4].

Hence, the sensing reports of each secondary user should be authenticated as well.

∙ Incentive Mechanisms: Most of existing collaborative spectrum sensing schemes assume

that all secondary users are ready to sense. This assumptionmight be easily violated in

the presence of selfish users, who may not cooperate in order to save their own wireless

resources (e.g., energy or transmission time) while enjoying the sensing results from others

[5], [6]. Such selfish behaviors seriously degrade the performance of collaborative spectrum

sensing. Incentive mechanisms are necessary to stimulate collaboration.

∙ Data Confidentiality: It implies that a sensing report is well protected and not revealed to

unauthorized external users who may monitor the communication channels by eavesdrop-

ping. Data Confidentiality can be easily achieved by end-to-end encryption, which requires

the presence of mutual authentication among sensing collaborators.

∙ Privacy Preservation: Compared with the above mentioned security problems, privacy

issues have received little attention in CRNs so far. Privacy is primarily regarded as pre-

serving the anonymity of a sensing node and/or the privacy ofits location. Location privacy

protection intends to prevent adversaries (e.g., other sensing nodes or external observers)

from linking a sensing node’s sensing report to the node’s physical location.

IV. EXISTING PROPOSALS FORSECURING COGNITIVE RADIO NETWORKS

In this section, we summarize the existing works related to the security issues in CRNs. All

of these works mainly focus on the PUE, SSDF and incentive problems, while few of them

consider the privacy issues in CRNs.

∙ Thwarting Primary User Emulation (PUE) Attack : PUE attack is introduced for the first

time in [1]. In the same article, a location distinction approach is suggested to distinguish
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an attacker’s signal from the primary user’s signal and therefore mitigate PUE attack. This

approach uses received signal strength (RSS) to estimate the source location of a signal, and

decides whether the signal is from the primary user based on the prior knowledge of the

primary user’s location. In [2], link signature is adopted to authenticate the primary user’s

signal. A helper node is proposed to inform a secondary user about the link signature of the

primary user at its location. Then, when the attacker launches PUE attack, the secondary

user is able to detect it by comparing the link signature of the primary user and that of the

received signal.

∙ Thwarting Spectrum Sensing Data Falsification (SSDF) Attack: In [3], an abnormal

misbehavior detection scheme is proposed. In this scheme, it is unrealistically assumed

that the spectrum usage pattern of the primary user, which usually is an ON-OFF ratio of

the primary user’s signal, is known. A secondary user whose sensing reports conflict with

this pattern is regarded as malicious. The effectiveness ofthis scheme decreases when the

ON-OFF ratio approximates to1. A machine learning based scheme is proposed in [4],

which does not rely on any specific signal propagation model.In this scheme, a trusted

initial set of signal propagation data in a region is taken asinput to build a Support Vector

Machine (SVM) classifier. The classifier is then used to detect integrity violations. In [7],

the proposed User-centric Misbehavior Detection Scheme (UMDS) is based on the fact that

a secondary user tends to trust its own sensing reports rather than others’. A user chooses

its own sensing reports over multiple target channels as thetrust base and evaluates other

users’ trust levels. It regards the users with fairly different sensing reports as malicious. The

advantage of UMDS is that it also performs well in attacker-dominant situations.

∙ Stimulating Selfish Behaviors in Collaborative Sensing: Selfish users in collaborative

sensing may not be willing to contribute to the cooperation,because scanning the spectrum

and broadcasting the sensing results will cost their extra time and energy. There are a few

previous proposals addressing selfish behaviors in CRNs. In[5], for a free-rider, not to share

sensing results is proved to be the dominating strategy in non-incentive CRNs. Besides,

some classic incentive strategies (Tit-for-Tat and 2-player Trigger, etc.) are demonstrated

to be improper for enhancing collaborative spectrum sensing, since punishing a specific

node without affecting others is an easy task. In order to thwart selfishness, an N player

horizontal infinite game is adopted to analyze several incentive strategies, such as Grim
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Trigger and Carrot-and-Stick, furthermore some improved strategies under random errors

are proposed to achieve better system performance. In [6], an evolutionary game is adopted

to study how to collaborate for a secondary user when there are selfish users. Evolution

Dynamics is used to analyze whether the secondary user should choose to be a free-rider at

the risk of no contributor in the network, or to contribute atsome cost. Learning algorithms

are also proposed to enable secondary users to have the evolutionary stable strategy based

on their own payoff observations.

From the above discussions, it can be concluded that most of the current works mainly focus

on the security aspects of CRNs while privacy issue has not been investigated before. In the

following section, we will identify several new privacy threats in CRNs.

V. PRIVACY THREATS IN COLLABORATIVE SENSING

Location privacy threats represent a unique security challenge in CRNs. This is mainly because

that a secondary user’s sensing reports on the signal propagation of primary users are highly

correlated to its physical location. Therefore, similar togeo-locating individuals via WiFi or

Bluetooth signals, a malicious attacker may exploit the correlation to geo-locate the secondary

user and thus compromise the user’s location privacy. Below, we identify a few new location

privacy attacks in CRNs. In the next section, we will introduce a novel location privacy preserving

framework to resist these attacks.

∙ External CR Report & Location Correlation Attack: Due to the open nature of wireless

communications, an external attacker may easily obtain theCR reports of a specific sensing

node by eavesdropping and compromise its location privacy by correlating the CR reports

and the node’s physical location.

∙ Internal CR Report & Location Correlation Attack: A malicious attacker, e.g., the FC,

may participate in the collaborative spectrum sensing as a legitimate node and receives

sensing reports from other nodes as rewards. After obtaining the sensing reports, it com-

promises any of these nodes’ location privacy by correlating the node’s CR reports and

physical location.

∙ Internal Differential CR Report & Location Correlation Attack: Unlike previous two

attacks that are based on individual sensing reports, this attack analyzes the aggregation

result of the sensing reports. The adversary appears as an internal node. It estimates a specific
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correlation

correlation

correlation

Fig. 2. RLC and DLC attacks in collaborative spectrum sensing of CRN. These two attacks may correlate users’ sensing

reports with their physical locations.

node’s sensing report and infers its location information by comparing the aggregation result

before and after the node joins/leaves the network.

For ease of presentation, we refer to the first two attacks collectively asCR Report & Location

Correlation Attack (or RLC attack) and term the last one asDifferential CR Report & Location

Correlation Attack (or DLC attack), which are shown in Fig.2.

To launch RLC attack or DLC attack, an attacker normally needs to generate the signal

propagation patterns by collecting the average RSS value ofeach channel at every position.

However, to avoid measuring RSS exhaustively, the attackermay adopt a simplified approach.

Specifically, it eavesdrops all the sensing reports transmitted within the network and uses them

to build a signal propagation model. By this approach, even without the corresponding location

information, it can still turn to some classification methodto partition the RSS data into multiple

sets corresponding to various locations. In our experiments, we choosesk-means classification

method for the attack because this method works very well in the case that the number of clusters

k (or number of collaborators) is known to the attacker. Further, as a typical machine learning

algorithm, it supports utilizing Euclidean distance as a metric or a variance as the measurement
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of cluster scatters. After performing the classification, the attacker obtains the centroid of each

cluster, which corresponds to a physical location.

When launching RLC attack, the attacker calculates the distance between the expectation of

user’s sensing reportsE[ri] and the centroid of each cluster. The expectation can be calculated

as the average value of the user’s several sensing reports. If the distance between the expectation

and the centroid of a specific cluster is less than a predetermined value�, the sensing report

is regarded as belonging to this cluster with a high correct probability, which means that this

sensing collaborator is expected to be at this position. Thus the location privacy of the users

can be easily violated. Note that, a large� may lead to a poor localization accuracy (or multiple

potential positions), while a small� may make the attacker fail to link a sensing report to any

cluster. The attacker needs to choose an appropriate� empirically in order to have the best

attacking performance.

DLC attack can be performed as follows. After a sensing node joins or leaves the network,

the adversary estimates the node’s submitted sensing report by comparing the changes of the

aggregation result induced by the node’s arrival/departure. After obtaining the estimated sensing

report, it infers the location information of the node by determining whether the report belongs

to a particular cluster in a similar way to RLC attack.

VI. L OCATION PRIVACY PRESERVING FRAMEWORK FOR COLLABORATIVE SENSING

In this section, we propose a novel location privacy preserving framework for collaborative

spectrum sensing to thwart various attacks mentioned aboveand provide location privacy guaran-

tee for secondary users. The proposed framework is composedof two parts: Privacy Preserving

Sensing Report Aggregation protocol (PPSRA) and Distributed Dummy Report Injection Protocol

(DDRI). Specifically, PPSRA utilizes applied cryptographic techniques to allow the FC to obtain

the aggregation result from various secondary users without learning each individual’s values

while DDRI can provide differential location privacy for secondary users by introducing a novel

sensing data randomization technique. Fig. 3 shows the proposed framework, which is to be

described in detail below.
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A. Privacy Preserving Sensing Report Aggregation against RLC Attack

PPSRA protocol is grounded on the concept of secret sharing in [9]. By sharing the FC’s

secret amongn secondary users, each secondary user encrypts the sensing report with its secret

and the FC cannot decrypt the secret unless it collects and aggregates the encrypted sensing

reports from all the sensing nodes. In particular, PPSRA canbe described as follows:

∙ System Setup: Let U = {u1, u2, . . . , un−1, un} be the set of secondary users andu0 be

the FC. A trusted third party generates a secret keyski for each secondary userui, s.t.
∑

n

i=0
ski = 0. We coin the scanned spectrums asC̃ = {C̃1, C̃2, ⋅ ⋅ ⋅ , C̃M} and denotes user

ui’s sensing report on spectrum̃Ck by rk
i
. Let G denote a cyclic group of prime orderp for

which Decisional Diffie-Hellman is hard andH : ℤ → G denotes a hash function modeled

as a random oracle.

∙ Sensing Report Encrypting: Each secondary userui ∈ U performs its spectrum sensing on

spectrumC̃k at time slott, and then encrypts the sensing reportrk
i

with its secret key as

follows:

ck
i
= gr

k

i ⋅H(t)ski. (1)

Thenui sends the encrypted sensing reportck
i

to the FC.

∙ Aggregation Phase: After receiving the spectrum sensing reports from all the participants,

the FC obtains the final aggregate sensing result by computing:

Vk = H(t)sk0
∏

i∈U

ck
i

(2)

Since
∑

n

i=1
ski = 0, it is obvious thatVk = g

∑
n

i=1
r
k

i . Therefore, to obtain the aggregated

sensing result for time slott, the FC needs to compute the discrete log ofVk baseg and then

obtain
∑

n

i=1
rk
i
. Note that, the RSS values in collaborative sensing reportsare typically not

large. In our experiment, RSS value varies in the range of [−30, 0], which makes the plaintext

space quite small. As pointed out by [9], when the plaintext space is small, decryption can be

accomplished via a brute-force search. If utilizing the Pollards lambda method, this computation

time could be finished in6.93ms. Such a computational overhead can satisfy the real-time

requirements of collaborative sensing, in which the time interval for two regular CR sensing is

2s.
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Fig. 3. A privacy preserving collaborative spectrum sensing framework

The security of PPSRA scheme is based on [9]. In PPSRA, the FC can only obtain the

encrypted datack
i

from ui, and according to [9], the FC cannot deduce the sensing report rk
i

without the node’s secret keyski. Therefore, PPSRA successfully resists Internal RLC attack

since each sensing result is encrypted with the user’s secret and the FC can only obtain the

overall aggregation result with no clue about the individual values. However, as we pointed out

in Section V, though it can successfully thwart RLC attack, PPSRA cannot thwart DLC attack.

In the following, we will show how to protect the differential location privacy of secondary users

by injecting some “special noises”.

B. Distributed Dummy Report Injection against DLC Attack

In traditional differential privacy literature, the standard procedure for ensuring differential

privacy is to let the FC add an appropriate magnitude of noiseor to let each participant add the

noise in a distributed way before publishing the desired statistic [8]. However, adding noise to

sensing reports may seriously degrade the performance of collaborative sensing, which obviously

deviates from the original goal of collaborative sensing. To address this problem, we introduce
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a Distributed Dummy Report Injection protocol (DDRI) to protect the location privacy of the

secondary users.

The basic idea of the DDRI is the following. During a user leaving/joining phase, other users

uses a dummy sensing reportrk
0
, which is provided by the FC’s own sensing (or any voluntary

secondary user’s), to replace the real sensing report (of the leaving/joining user) at a predefined

probabilityp. Unlike traditional noise based differential privacy protection techniques which may

have a negative effect on collaborative sensing, such a dummy report based approach will not

pollute the aggregation result. Instead, it only increasesthe weight of a real sensing report from

the FC of the overall aggregation result and reduce the number of real participants involved in

the collaborative sensing, which are two major metrics considered in the subsequent performance

analysis. In our experiment, it is found that by choosing an appropriate probabilityrk
0
, DDRI

can pose a minimal effect on the performance of collaborative spectrum sensing.

VII. EXPERIMENT AND EVALUATION

In this section, we first demonstrate the practicality of theidentified RLC and DLC attacks

by using real-world experiments. Then, we show the effectiveness of the proposed PPSRA and

DDRI protocols by comparing their privacy leaking with the traditional collaborative spectrum

sensing. In our experiment, it is also shown that PPSRA and DDRI pose a limited negative effect

on the performance of collaborative spectrum sensing.

A. System Setup

Our experiment environment is set up at Building of Electronic Information and Electrical

Engineering School and located at Shanghai Jiao Tong University, Minghang Campus. We use

Universal Software Radio Peripheral (USRP) with a TVRX daughterboard (50 MHz to 860 MHz

Receiver) and a wide band antenna (70 MHz to 1000 MHz) to detect the TV radio signal in

the building. Then we scan the spectrum from 600 MHz to 860 MHzat these 13 places with

each spectrum scanned for 10 seconds totally while every 8 MHz spectrum scanned for 33ms.

To evaluate the privacy leaking risks of various attacks, weemulate an attacker’s behavior to

geo-locate a secondary user as presented in Section V.
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B. Experiment Results

To demonstrate the effectiveness of the identified RLC and DLC attacks, we consider two

performance metrics, Attack Successful Rate (ASR) and the Location Privacy Entropy (LPE).

In both of RLC and DLC attacks, if the attacker could correctly geo-locate a secondary user by

correlating his sensing report to his physical locations out of total 13 locations, it is regarded as

a successful attack. However, in some cases, the attacker may not accurately correlate a sensing

report to a location. In stead, with a limited number of sensing reports, the attacker can still

derive a potential location set, which includes the real location of the target secondary user. From

the information theory point of view, with RLC and DLC attacks, the attacker can still obtain

a certain location information of the secondary users. Therefore, by adopting the definition of

entropy [10], we could have a similar definition on location privacy, which is used to describe

the uncertainty of the attackers to correlate a sensing report (or the secondary user) to a specific

location. The experiment result of RLC and DLC without any privacy preserving method is

shown in TABLE. I, where� is the bound of distance between centroid and sample point.

Attack Type � Max ASR Min ASR Average ASR Average LPE

RLC

1.44 100% 76.92% 91.31% 0.47

2.25 100% 92.31 99.15% 0.06

4.00 61.54% 46.15% 56.77% 0.47

DLC

2.25 92.31% 46.15% 71.08% 1.31

4.00 92.31% 53.85% 79.31% 0.52

6.25 100% 69.23% 84.38% 0.36

TABLE I

THE ATTACK SUCCESSRATE (ASR) AND THE LOCATION PRIVACY ENTROPY (LPE) UNDER DIFFERENT�

It is observed that with a proper parameter�, i.e. RLC with � = 2.25 and DLC with� = 6.25

in TABLE. I, in both attacks, ASR can reach about90% , and the achieved entropy can be close

to 0, while the maximum entropy islog
2
13 ≈ 3.7. So it indicates that, with a proper parameter

�, the attacker could launch both of the RLC and DLC effectively.

We further evaluate the effectiveness of the proposed PPSRAand DDRI protocols as well

as the impact of DDRI on the performance of the collaborativesensing. In our experiment, we

derive the probabilityp from a normal distributionN(�, �). It is obvious that without knowing
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Fig. 4. The evaluation results about the RLC attack, DLC attack and DDRI and DDRI’s impact on collaborative sensing

the individual sensing report, both of the external or internal RLC may not be effective any more.

On the other hand, in terms of DLC, there are still some locations can be inferred, but most of

the correlation is not authentic. So ASR of DLC is also close to 0. In Fig. 4(a), it is observed that

under the protection, the entropy level of secondary users’location privacy remains unchanged,

which means the uncertainty of the attackers about user’s location remains unchanged. Thus,

the user’s location privacy could be well protected. Fig. 4(b) shows that DDRI pose a limited

effect on the performance of collaborative spectrum sensing.

In summary, the experiment results confirm the existence of RLC and DLC, and substantiate

the effectiveness of the privacy preserving framework.

VIII. CONCLUSION

Collaborative spectrum sensing is regarded as a fundamental task for each secondary user in

cognitive radio networks (CRNs). In this paper, we firstly identify the potential security threats in

collaborative spectrum sensing. We then give a comprehensive survey on the existing works on

secure collaborative spectrum sensing, which shows that location privacy issue has received little

attention so far. With the real-world experiments, we pointout three new location privacy related

attacks in collaborative spectrum sensing. To thwart thesenew attacks, we propose a novel privacy

preserving collaborative spectrum sensing framework including a privacy preserving sensing

report aggregation (PPSRA) protocol to thwart external/internal RLC attack and distributed
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dummy report injection (DDRI) protocol to prevent DLC attack. Our experiment results have

demonstrated the practicality of the identified RLC and DLC attacks and the proposed PPSRA

and DDRI protocols could effectively thwart these attack with a minimized overhead.
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