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Abstract

Collaborative spectrum sensing is regarded as a promigipgoach to significantly improve the
performance of spectrum sensing in Cognitive Radio Net&/¢@iRNs). However, due to the open nature
of wireless communications and the increasingly availabfevare-defined radio platforms, collaborative
spectrum sensing also poses many new research challespesiadly in the aspects of security and
privacy. In this article, we firstly identify the potentisgdeurity threats towards the collaborative spectrum
sensing in CRNs. Then we review the existing proposalsaeltt secure collaborative spectrum sensing.
Furthermore, we identify several new location privacy tedaattacks in collaborative sensing, which
are expected to compromise secondary users’ locationgyrivg correlating their sensing reports and
their physical locations. To thwart these attacks, we psep® novel privacy preserving framework in
collaborative spectrum sensing to prevent location pyiaaking. We design and implement a real-
world testbed to evaluate the system performance. Thekagtgueriment results show that, if there is no
any security guarantee, the attackers could successtuthypmmise a secondary user’s location privacy
at the success rate larger th@?%. We also show that the proposed privacy preserving framecan
significantly improve the location privacy of secondarynsseith a minimal effect on the performance

of the collaborative sensing.
Keywords Security, Location Privacy, Privacy Preserving, Collaboative Sensing

. INTRODUCTION

The proliferation of smart phones and mobile Internet bamgplications require a better

utilization of radio channels. To address the ever incrgasiemand for wireless bandwidth,

January 28, 2012 DRAFT



cognitive radio networks (CRNs) have been proposed to ingotioe efficiency of channel utiliza-

tion under the current static channel allocation policylikénconventional spectrum regulation
paradigms in which the majority of the spectrum is allocateéixed licensed users (or primary
users) for exclusive use, a CRN system permits unlicensexs (jer secondary users) to utilize
the idle spectrum as long as it does not introduce interéerein the primary users. As an

important regulatory step, the FCC (Federal Communicat©@ammission) has recently adopted
rules to allow unlicensed radio operation in the unusedigustof the TV spectrum, commonly

referred as white space, which is expected to provide aaditispectrum.

One major technical challenge in designing dynamic spettagcess systems is to detect
the presence of primary users and to further determine thdability of a certain channel.
It is recently discovered that collaboration among mudtisecondary users can significantly
improve the performance of spectrum sensing by exploitivgrtspatial diversity. Therefore,
collaborative spectrum sensing has been widely adoptedl exigting standards or proposals,
i.e., IEEE 802.22 WRAN, CogNeA, IEEE 802.11af and WhiteFi.

Collaborative spectrum sensing is regarded as a promigipgpach to significantly improve
the performance of spectrum sensing in CRNs. However, dubdmpen nature of wireless
communications and the increasingly available softwafenee radio platforms, e.g., Universal
Software Radio Peripherals (USRPS), it also poses many esearch challenges, especially in
the aspects of security and privacy. A malicious node maly geexploit a channel in a region by
falsely reporting a present primary signal, or dually, seekandalize the network by reporting
that a present primary is not detected thereby encouragitegférence from secondary users.
Further, a selfish node may try to enjoy a free wireless acag®sgce without contributing to the
spectrum sensing result. Least but not last, untrustedlmmative spectrum fusion center may
try to compromise the location privacy of a specific user bg-peating it from its collaborative
spectrum sensing reports.

In this article, we summarize the existing security thretisards collaborative spectrum
sensing in CRNs, and review existing solutions to them. Vém tidentify several new security
attacks in collaborative spectrum sensing, which aim to promise secondary users’ location
privacy by correlating their sensing reports and their pfaldocations. To thwart these attacks
and preserve location privacy, we propose a novel privaeggwing framework for collaborative

spectrum sensing. We design and implement a real-worltdddsio evaluate its performance.
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The attack experiment results indicate that, when thereiseaturity technique employed, the
attacker can compromise a secondary user’s location pri@ae success rate larger thams.
We further show that the proposed privacy preserving fraomkewan significantly improve the
location privacy of secondary users without jeopardizihg tollaborative spectrum sensing

performance.

[I. COLLABORATIVE SENSING IN COGNITIVE RADIO NETWORKS

In CRNSs, a fundamental task of each CR user is to detect th&epece of primary users
(PUs) if they exist or to identify the available spectrum i$are absent. Although the FCC’s
recent ruling eliminates spectrum sensing as a requireoerdevices that have geo-location
capabilities and can access a new TV band (geo-locatioapédseé, it is expected that spectrum
sensing and its variants will still play an important roleimmproving the performance of CRNs
for the following reasons. First, collaborative spectruensing can be used to support the
operation of sensing-only devices that cannot access ttabake. Second, compared with the
database built from propagation models, collaborativectspm sensing can provide a more
accurate view of spectrum availability since the databaag be conservative and declare many
channels (at locations away from the TV transmitters) asipied even if they are idle. Third,
the details of spectrum sensing results assist in selebigger quality channels for operation
when multiple channels are available. Finally, utilizirge tgeo-location database for spectrum
availability information is similar to traditional locam based services; it will inevitably leak
users’ location information, and may not be desirable faatmn-privacy-sensitive secondary
users.

Collaborative spectrum sensing methods can be generaBgitied as centralized or distributed
sensing, as illustrated in Fig. 1. In centralized sensinggraral node called Fusion Center (FC)
controls a three-step cooperative sensing process. EFiestFC selects a control channel and
instructs all cooperating CR users to individually perfdooal sensing. Second, all cooperating
CR users report their sensing results to FC via the contrahweél. Finally, FC combines the
received local sensing reports to determine the presenB&sf and diffuses the decision back
to cooperating CR users. On the contrary, distributed sgndbes not need any centralized
FC to make the cooperative decision; CR users communicdte e@ch others in a peer-to-

peer manner and iteratively converge to a unified decisiotherpresence or absence of PUs.
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Common signal detection techniques include matched fitieergy detection, cyclostationary
detection and wavelet detection, among which energy detect the most popular approach
due to its simplicity and short sensing time (less than 1mafthannel). In this article, we adopts
energy detection to detect signal. However, the proposkdnse could be readily extended to

other signal detection techniques.

[1l. SECURITY CHALLENGES IN COLLABORATIVE SENSING

In collaborative spectrum sensing of CRNSs, there are skwetia emerging security challenges
as introduced below.
« Authentication: Several aspects of authentication issues should be @asievhen securing
collaborative spectrum sensing.

— Primary User Authentication: In CRNs, an attacker may transmit its signal with high
power or mimic specific features of the primary user’s sigeal., use the same pilot or
synchronization word) to bypass the primary user detectiethod used. Consequently,
secondary users may incorrectly identify the attackegsal as the primary user’s and
will not use the relevant channel. Such attack is called &yntser Emulation (PUE)
attack [1], [2]. To thwart this attack, secondary users #hauthenticate the identity

of received signal when sensing the targeted channel.

January 28, 2012 DRAFT



— Secondary User Authentication: When the FC (or a secondary user) collects sensing
reports from other users, it should authenticate the itestof the secondary users.
Otherwise, a potential attacker may forge the identity otfeosdary user to send false
sensing reports.

— Sensing Report Authentication: Although secondary users’ identities can be authenti-
cated during the sensing report aggregation process, dssilple that some legitimate
but malicious secondary users report unauthentic sensggts in an internal attack.
This attack is coined as Spectrum Sensing Data Falsificd8&@DF) attack [3], [4].
Hence, the sensing reports of each secondary user shouldthenticated as well.

« Incentive Mechanisms Most of existing collaborative spectrum sensing schensssirae
that all secondary users are ready to sense. This assumpigit be easily violated in
the presence of selfish users, who may not cooperate in cvdesivie their own wireless
resources (e.g., energy or transmission time) while engite sensing results from others
[5], [6]. Such selfish behaviors seriously degrade the perémce of collaborative spectrum
sensing. Incentive mechanisms are necessary to stimwtédaration.

. Data Confidentiality: It implies that a sensing report is well protected and neéaéed to
unauthorized external users who may monitor the commuaoitahannels by eavesdrop-
ping. Data Confidentiality can be easily achieved by endftd-encryption, which requires
the presence of mutual authentication among sensing cod#drs.

« Privacy Preservation Compared with the above mentioned security problems.apyiv
issues have received little attention in CRNs so far. Pyiviacprimarily regarded as pre-
serving the anonymity of a sensing node and/or the privadisdbcation. Location privacy
protection intends to prevent adversaries (e.g., othesisgmodes or external observers)

from linking a sensing node’s sensing report to the nodeissighl location.

IV. EXISTING PROPOSALS FORSECURING COGNITIVE RADIO NETWORKS

In this section, we summarize the existing works relatechto decurity issues in CRNs. All
of these works mainly focus on the PUE, SSDF and incentivélpnos, while few of them
consider the privacy issues in CRNs.

« Thwarting Primary User Emulation (PUE) Attack : PUE attack is introduced for the first

time in [1]. In the same article, a location distinction amgech is suggested to distinguish
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an attacker’s signal from the primary user’s signal anddfoge mitigate PUE attack. This
approach uses received signal strength (RSS) to estimatotirce location of a signal, and
decides whether the signal is from the primary user basederptior knowledge of the
primary user’s location. In [2], link signature is adoptedauthenticate the primary user's
signal. A helper node is proposed to inform a secondary usautehe link signature of the
primary user at its location. Then, when the attacker lagedPUE attack, the secondary
user is able to detect it by comparing the link signature efghimary user and that of the
received signal.

« Thwarting Spectrum Sensing Data Falsification (SSDF) Attak: In [3], an abnormal
misbehavior detection scheme is proposed. In this scheims, unrealistically assumed
that the spectrum usage pattern of the primary user, whighallysis an ON-OFF ratio of
the primary user’s signal, is known. A secondary user whessiag reports conflict with
this pattern is regarded as malicious. The effectiveneshisfscheme decreases when the
ON-OFF ratio approximates tb. A machine learning based scheme is proposed in [4],
which does not rely on any specific signal propagation moltethis scheme, a trusted
initial set of signal propagation data in a region is takemnasit to build a Support Vector
Machine (SVM) classifier. The classifier is then used to detgegrity violations. In [7],
the proposed User-centric Misbehavior Detection SchenMdB) is based on the fact that
a secondary user tends to trust its own sensing reportsr ridthie others’. A user chooses
its own sensing reports over multiple target channels agrtls# base and evaluates other
users’ trust levels. It regards the users with fairly difetr sensing reports as malicious. The
advantage of UMDS is that it also performs well in attackemthant situations.

« Stimulating Selfish Behaviors in Collaborative Sensing Selfish users in collaborative
sensing may not be willing to contribute to the cooperatlmtause scanning the spectrum
and broadcasting the sensing results will cost their extna eind energy. There are a few
previous proposals addressing selfish behaviors in CRNS],Ifor a free-rider, not to share
sensing results is proved to be the dominating strategy mimcentive CRNs. Besides,
some classic incentive strategies (Tit-for-Tat and 2-ptayrigger, etc.) are demonstrated
to be improper for enhancing collaborative spectrum sgnssimce punishing a specific
node without affecting others is an easy task. In order toathwelfishness, an N player

horizontal infinite game is adopted to analyze several itnerstrategies, such as Grim
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Trigger and Carrot-and-Stick, furthermore some improvedtsgies under random errors
are proposed to achieve better system performance. Inrjadyalutionary game is adopted
to study how to collaborate for a secondary user when thezeselfish users. Evolution
Dynamics is used to analyze whether the secondary usercgshbabse to be a free-rider at
the risk of no contributor in the network, or to contributesatme cost. Learning algorithms
are also proposed to enable secondary users to have thdi@valy stable strategy based
on their own payoff observations.

From the above discussions, it can be concluded that mosteo€urrent works mainly focus

on the security aspects of CRNs while privacy issue has nen lmvestigated before. In the

following section, we will identify several new privacy tats in CRNs.

V. PRIVACY THREATS IN COLLABORATIVE SENSING

Location privacy threats represent a unique security engh in CRNs. This is mainly because
that a secondary user’s sensing reports on the signal prtpagof primary users are highly
correlated to its physical location. Therefore, similargeo-locating individuals via WiFi or
Bluetooth signals, a malicious attacker may exploit thealation to geo-locate the secondary
user and thus compromise the user’s location privacy. Belesvidentify a few new location
privacy attacks in CRNs. In the next section, we will introdwa novel location privacy preserving
framework to resist these attacks.

. External CR Report & Location Correlation Attack: Due to the open nature of wireless
communications, an external attacker may easily obtailCReaeports of a specific sensing
node by eavesdropping and compromise its location privgcgdorelating the CR reports
and the node’s physical location.

« Internal CR Report & Location Correlation Attack: A malicious attacker, e.g., the FC,
may participate in the collaborative spectrum sensing asgdirhate node and receives
sensing reports from other nodes as rewards. After obtitiie sensing reports, it com-
promises any of these nodes’ location privacy by corredatime node’s CR reports and
physical location.

. Internal Differential CR Report & Location Correlation Attack: Unlike previous two
attacks that are based on individual sensing reports, thaskaanalyzes the aggregation

result of the sensing reports. The adversary appears ageandhnode. It estimates a specific
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Fig. 2. RLC and DLC attacks in collaborative spectrum sensifii CRN. These two attacks may correlate users’ sensing

reports with their physical locations.

node’s sensing report and infers its location informatigrcbmparing the aggregation result
before and after the node joins/leaves the network.
For ease of presentation, we refer to the first two attackeaolely asCR Report & Location
Correlation Attack (or RLC attack) and term the last oneRi$ferential CR Report & Location
Correlation Attack (or DLC attack), which are shown in Fig.2.

To launch RLC attack or DLC attack, an attacker normally setw generate the signal
propagation patterns by collecting the average RSS valueaoh channel at every position.
However, to avoid measuring RSS exhaustively, the attaciar adopt a simplified approach.
Specifically, it eavesdrops all the sensing reports trattechivithin the network and uses them
to build a signal propagation model. By this approach, evéhowut the corresponding location
information, it can still turn to some classification methodartition the RSS data into multiple
sets corresponding to various locations. In our experigjyamé chooseg-means classification
method for the attack because this method works very wellercase that the number of clusters
k (or number of collaborators) is known to the attacker. Fentlas a typical machine learning

algorithm, it supports utilizing Euclidean distance as drimer a variance as the measurement
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of cluster scatters. After performing the classificatidre attacker obtains the centroid of each
cluster, which corresponds to a physical location.

When launching RLC attack, the attacker calculates thenitgt between the expectation of
user’s sensing report8[r;] and the centroid of each cluster. The expectation can belatd
as the average value of the user’s several sensing reddits. distance between the expectation
and the centroid of a specific cluster is less than a predetethvaluee, the sensing report
is regarded as belonging to this cluster with a high correcbability, which means that this
sensing collaborator is expected to be at this position.sTine location privacy of the users
can be easily violated. Note that, a largeay lead to a poor localization accuracy (or multiple
potential positions), while a smailmay make the attacker fail to link a sensing report to any
cluster. The attacker needs to choose an appropsiampirically in order to have the best
attacking performance.

DLC attack can be performed as follows. After a sensing nodesjor leaves the network,
the adversary estimates the node’s submitted sensingtreparomparing the changes of the
aggregation result induced by the node’s arrival/depertéfter obtaining the estimated sensing
report, it infers the location information of the node byeteatining whether the report belongs

to a particular cluster in a similar way to RLC attack.

VI. LOCATION PRIVACY PRESERVING FRAMEWORK FOR COLLABORATIVE SENSING

In this section, we propose a novel location privacy prasgriramework for collaborative
spectrum sensing to thwart various attacks mentioned adnad¢rovide location privacy guaran-
tee for secondary users. The proposed framework is compuidged parts: Privacy Preserving
Sensing Report Aggregation protocol (PPSRA) and Distetdildummy Report Injection Protocol
(DDRI). Specifically, PPSRA utilizes applied cryptograpkechniques to allow the FC to obtain
the aggregation result from various secondary users witleauning each individual's values
while DDRI can provide differential location privacy for@ndary users by introducing a novel
sensing data randomization technique. Fig. 3 shows theopespframework, which is to be

described in detail below.
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A. Privacy Preserving Sensing Report Aggregation against RLC Attack

PPSRA protocol is grounded on the concept of secret shaniri§]i By sharing the FC’s
secret among secondary users, each secondary user encrypts the seegorgwith its secret
and the FC cannot decrypt the secret unless it collects agegates the encrypted sensing

reports from all the sensing nodes. In particular, PPSRA=adescribed as follows:

o System Setup: Let U = {uy,us,...,u,_1,u,} be the set of secondary users amdbe
the FC. A trusted third party generates a secret keyfor each secondary uset;, S.t.
> iy sk; = 0. We coin the scanned spectrumsfé& {51, (72, e ,5M} and denotes user
u;'S sensing report on spectrué‘k by r*. Let G denote a cyclic group of prime ordgrfor
which Decisional Diffie-Hellman is hard anll : Z — G denotes a hash function modeled
as a random oracle.

« Sensing Report Encrypting: Each secondary user, € U performs its spectrum sensing on
spectrum@k at time slott, and then encrypts the sensing repdrtwith its secret key as

follows:

k
Ti

i =g H(t)™. (1)

Thenwu; sends the encrypted sensing repgrto the FC.
« Aggregation Phase: After receiving the spectrum sensing reports from all thetipipants,
the FC obtains the final aggregate sensing result by congputin
Vi=H@p)™ [ e (2)
€U
Since) " , sk; = 0, it is obvious thatV, = g>i=17i . Therefore, to obtain the aggregated
sensing result for time slat the FC needs to compute the discrete log/pfbaseg and then
obtain > , r¥. Note that, the RSS values in collaborative sensing repamstypically not
large. In our experiment, RSS value varies in the range-@0[ 0], which makes the plaintext
space quite small. As pointed out by [9], when the plaintg@ece is small, decryption can be
accomplished via a brute-force search. If utilizing thel&dls lambda method, this computation
time could be finished ir6.93ms. Such a computational overhead can satisfy the real-time
requirements of collaborative sensing, in which the timterival for two regular CR sensing is
2s.
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Fig. 3. A privacy preserving collaborative spectrum segihiamework

The security of PPSRA scheme is based on [9]. In PPSRA, the &Coaly obtain the
encrypted data? from u;, and according to [9], the FC cannot deduce the sensing trefor
without the node’s secret keyk;. Therefore, PPSRA successfully resists Internal RLC kttac
since each sensing result is encrypted with the user’s tsaagk the FC can only obtain the
overall aggregation result with no clue about the individieues. However, as we pointed out
in Section V, though it can successfully thwart RLC attacRSRA cannot thwart DLC attack.
In the following, we will show how to protect the differentiacation privacy of secondary users

by injecting some $pecial noises’.

B. Distributed Dummy Report Injection against DLC Attack

In traditional differential privacy literature, the staard procedure for ensuring differential
privacy is to let the FC add an appropriate magnitude of noige let each participant add the
noise in a distributed way before publishing the desiretistia [8]. However, adding noise to
sensing reports may seriously degrade the performancdlabooative sensing, which obviously

deviates from the original goal of collaborative sensing.atfidress this problem, we introduce
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a Distributed Dummy Report Injection protocol (DDRI) to prot the location privacy of the
secondary users.

The basic idea of the DDRI is the following. During a user laegyjoining phase, other users
uses a dummy sensing repeft, which is provided by the FC’s own sensing (or any voluntary
secondary user’s), to replace the real sensing report éofetiiving/joining user) at a predefined
probability p. Unlike traditional noise based differential privacy gction techniques which may
have a negative effect on collaborative sensing, such a qureport based approach will not
pollute the aggregation result. Instead, it only increabesweight of a real sensing report from
the FC of the overall aggregation result and reduce the nuwiesal participants involved in
the collaborative sensing, which are two major metrics wared in the subsequent performance
analysis. In our experiment, it is found that by choosing pprapriate probability-%, DDRI

can pose a minimal effect on the performance of collabagatjppectrum sensing.

VIl. EXPERIMENT AND EVALUATION

In this section, we first demonstrate the practicality of ithentified RLC and DLC attacks
by using real-world experiments. Then, we show the effectss of the proposed PPSRA and
DDRI protocols by comparing their privacy leaking with thraditional collaborative spectrum
sensing. In our experiment, it is also shown that PPSRA anRIDiose a limited negative effect

on the performance of collaborative spectrum sensing.

A. System Setup

Our experiment environment is set up at Building of Eledramformation and Electrical
Engineering School and located at Shanghai Jiao Tong WiiyeMinghang Campus. We use
Universal Software Radio Peripheral (USRP) with a TVRX d#egooard (50 MHz to 860 MHz
Receiver) and a wide band antenna (70 MHz to 1000 MHz) to téecTV radio signal in
the building. Then we scan the spectrum from 600 MHz to 860 MiHthese 13 places with
each spectrum scanned for 10 seconds totally while every & Bfi¢ctrum scanned for 33ms.
To evaluate the privacy leaking risks of various attacks,emnmilate an attacker’'s behavior to

geo-locate a secondary user as presented in Section V.
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B. Experiment Results

To demonstrate the effectiveness of the identified RLC andC Dittacks, we consider two
performance metrics, Attack Successful Rate (ASR) and theation Privacy Entropy (LPE).
In both of RLC and DLC attacks, if the attacker could cornggtbo-locate a secondary user by
correlating his sensing report to his physical locationsajuotal 13 locations, it is regarded as
a successful attack. However, in some cases, the attackenotaccurately correlate a sensing
report to a location. In stead, with a limited number of segsieports, the attacker can still
derive a potential location set, which includes the reahtimn of the target secondary user. From
the information theory point of view, with RLC and DLC attackhe attacker can still obtain
a certain location information of the secondary users. &loee, by adopting the definition of
entropy [10], we could have a similar definition on locatiaivacy, which is used to describe
the uncertainty of the attackers to correlate a sensingtépothe secondary user) to a specific
location. The experiment result of RLC and DLC without anywacy preserving method is

shown in TABLE. |, wheree is the bound of distance between centroid and sample point.

Attack Type | e Max ASR Min ASR Average ASR Average LPE
1.44 100% 76.92% 91.31% 0.47
RLC 2.25 100% 92.31 99.15% 0.06
4.00 | 61.54% 46.15% 56.77% 0.47
2.25| 92.31% 46.15% 71.08% 1.31
DLC 4.00 | 92.31% 53.85% 79.31% 0.52
6.25 100% 69.23% 84.38% 0.36
TABLE |

THE ATTACK SUCCESSRATE (ASR)AND THE LOCATION PRIVACY ENTROPY (LPE) UNDER DIFFERENTE

It is observed that with a proper parameter.e. RLC withe = 2.25 and DLC withe = 6.25
in TABLE. I, in both attacks, ASR can reach ab®it% , and the achieved entropy can be close
to 0, while the maximum entropy isg, 13 ~ 3.7. So it indicates that, with a proper parameter
¢, the attacker could launch both of the RLC and DLC effecyivel

We further evaluate the effectiveness of the proposed PP&RADDRI protocols as well
as the impact of DDRI on the performance of the collaborasimesing. In our experiment, we

derive the probabilityp from a normal distributionV(u, d). It is obvious that without knowing
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Fig. 4. The evaluation results about the RLC attack, DLCcatand DDRI and DDRI's impact on collaborative sensing

the individual sensing report, both of the external or iné¢iRLC may not be effective any more.
On the other hand, in terms of DLC, there are still some locatican be inferred, but most of
the correlation is not authentic. So ASR of DLC is also cla@s8.tin Fig. 4(a), it is observed that
under the protection, the entropy level of secondary udecsition privacy remains unchanged,
which means the uncertainty of the attackers about usetatitln remains unchanged. Thus,
the user’s location privacy could be well protected. Figy)4hows that DDRI pose a limited
effect on the performance of collaborative spectrum sensin

In summary, the experiment results confirm the existencelLd Bnd DLC, and substantiate

the effectiveness of the privacy preserving framework.

VIIl. CONCLUSION

Collaborative spectrum sensing is regarded as a fundahtestafor each secondary user in
cognitive radio networks (CRNSs). In this paper, we firstlgntify the potential security threats in
collaborative spectrum sensing. We then give a compreheissirvey on the existing works on
secure collaborative spectrum sensing, which shows tleatitin privacy issue has received little
attention so far. With the real-world experiments, we pouit three new location privacy related
attacks in collaborative spectrum sensing. To thwart thegeattacks, we propose a novel privacy
preserving collaborative spectrum sensing frameworkuthiolg a privacy preserving sensing

report aggregation (PPSRA) protocol to thwart externtdfiml RLC attack and distributed

January 28, 2012 DRAFT



15

dummy report injection (DDRI) protocol to prevent DLC a#ta®©ur experiment results have
demonstrated the practicality of the identified RLC and Dlitacks and the proposed PPSRA

and DDRI protocols could effectively thwart these attackiva minimized overhead.
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